Scanning electron microscope (SEM) MIRA3 XMU (MIRA-STAN)

Scanning electron microscope (SEM) MIRA3 XMU
CONTACT US

Guarantor: Petr Lepcio, Ph.D.
Instrument status: Operational Operational, 13.11.2023 16:31
Equipment placement: CEITEC Nano - A1.11
Research group: CF: CEITEC Nano


Description:

Scanning electron microscope (SEM) MIRA3 XMU

Description

• Scanning electron microscope (SEM) is used to study the morphology and topography of conductive and non-conductive materials in high resolution (micro to nano-scale).
• Observation of surface samples with high depth of focus using multiple detection system (SE, BSE, STEM) including elemental analysis using energy dispersive spectrometer (EDS).

Applications

• Observation of both the surface and internal structure of micro and nano-objects (phase interface such as matrix-filler/reinforcement, particle distribution, aggregates and defects, fracture surfaces, porous 3D materials, units of supramolecular structure, etc.)
• evaluation of the shape and dimensions (length, diameter, volume, roughness) of powders, tubes, short fibers
• fast and highly accurate chemical microanalysis and elemental mapping of a sample surface
• qualitative elemental analysis including determination of the distribution of each element
• quantitative analysis of the individual elements in a sample
• The structural analysis of polymeric materials, biopolymers and composites, biomaterials, ceramics, bones, teeth, substrates for tissue engineering, etc.

Specification

• High Brightness Schottky Emitter
• Detectors:
SE, BSE, In-beam SE, In-Beam BSE
LVSTD
STEM detector
EDX analysis
• High-vacuum (≤9x10-3Pa) or low-vacuum mode (7-500 Pa)
• Magnification 25 to 1 000 000x
• Acceleration voltage 200 V to 30 kV
• X-Y-Z 130×130×100mm
• Maximum specimen height: 106 mm


Publications:

  • RONOH, K.; NOVOTNÝ, J.; MRŇA, L.; KNÁPEK, A.; SOBOLA, D., 2024: Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablation. MATERIALS RESEARCH EXPRESS 11(1), doi: 10.1088/2053-1591/ad184b; FULL TEXT
    (DEKTAK, MIRA-STAN, KRATOS-XPS, NANOINDENTER)
  • ŠKARPA, P.; JANČÁŘ, J.; LEPCIO, P.; ANTOŠOVSKÝ, J.; KLOFÁČ, D.; KRIŠKA, T.; ABDELLATIF, A.; BRTNICKÝ, M., 2023: Effect of fertilizers enriched with bio-based carriers on selected growth parameters, grain yield and grain quality of maize (Zea mays L.) . EUROPEAN JOURNAL OF AGRONOMY 143, doi: 10.1016/j.eja.2022.126714; FULL TEXT
    (FTIR-CHEMLAB, MIRA-STAN)
  • JANČÍK PROCHÁZKOVÁ, A.; PUMERA, M., 2023: Light-powered swarming phoretic antimony chalcogenide-based microrobots with ´on-the-fly´ photodegradation abilities. NANOSCALE 15(12), p. 5726 - 9, doi: 10.1039/d3nr00098b; FULL TEXT
    (MIRA-STAN, RIGAKU3)
  • Vida, J.; Pospisil, J.; Souček, P.; Weiter, M.; Homola, T., 2023: Rapid, low-temperature, air plasma sintering of mesoporous titania electron transporting layers in perovskite solar cells. SOLAR ENERGY MATERIALS AND SOLAR CELLS 263, doi: 10.1016/j.solmat.2023.112562; FULL TEXT
    (KRATOS-XPS, MIRA-STAN)
  • JANČÍK PROCHÁZKOVÁ, A.; JAŠEK, V.; FIGALLA, S.; PUMERA, M., 2023: Photocatalytic Microplastics ´On-The-fly´ Degradation via Motile Quantum Materials-Based Microrobots. ADVANCED OPTICAL MATERIALS , p. 1 - 9, doi: 10.1002/adom.202300782; FULL TEXT
    (MIRA-STAN, RIGAKU3)

Show more publications...