Change institution
Advanced Nano and Microtechnologies Advanced Materials Structural Biology Gen. and Prot. of Plant Systems Molecular Medicine Brain and Mind Research Molecular Vet. Medicine

Advanced Ceramic Materials

Research Group Leader
Researcher ID
Phone: +420 54114 9728, +420 54114 3339
Deputy Group Leader
Researcher ID
Phone: +420 54114 9729, +420 54114 3343

Research areas

  • Biomaterials
  • Materials for energetics and ecology
  • Structural materials

Main objectives


The development of novel composite biomaterials that can induce the growth of connective tissue on the surface of implants and thus accelerate healing and improve the strength and biological stability of the implant-tissue connection (ceramic materials for replacement of soft and hard tissues, materials for orthopaedic devices).

Materials for energetics and ecology

The development of novel composite materials with functionally graded structures for improving the efficiency and lifetimes of components and devices for energetics (conductive ceramic materials for electrodes, catalysts for the decomposition of gaseous pollutants).

Structural materials

The development of novel ceramics and ceramic composites with excellent mechanical and thermal properties for structural applications (transparent ceramic materials, thermally and chemically resistant ceramic composite materials, impact-resistant ceramic composites).

Content of research

Advanced ceramic materials

The research will be focussed on the preparation of precursors of advanced ceramic materials and composites using modern advanced methods of inorganic ceramic powder synthesis and surface or bulk modifi cations of ceramic nanoparticles. By means of application of novel ceramic shaping and sintering methods and using advanced ceramic precursors new heterogeneous, functionally graded and nanostructural ceramic materials will be developed. Characterisation of composition structure and properties of advanced ceramic materials, modelling of the structure-property-function relationships and testing of ceramic materials from the view of potential applications will be carried out. The particular research activities include:

Synthesis of ceramic powdered materials

The research of ceramic synthesis will be focussed on methods for the thermodynamically and kinetically controlled preparation of powder materials or mixtures with a defi ned chemical composition and properties (size, shape and phase composition) namely on synthesis methods producing nanoceramic powders with tailored properties. Newly developed methods based on organometallic, colloidal and surface chemistry will facilitate the precise control of the composition and surface properties of nanometric ceramic powders. This will have consequences in decreasing sintering temperatures and also in new properties of nanostructured ceramics.

Consolidation, shaping and sintering of ceramic materials

The research in the area of shaping ceramic materials will be mainly focussed on a study of concentrated ceramic suspensions and their behaviour during consolidation by methods based on liquid-solid phase transition. The development of these techniques will be oriented to materials with requested structure and dimensional accuracy. The main eff ort will be focussed on fi nding empirical and physical models describing the behaviour of concentrated suspensions during their transition to bulk nanoceramics. There is a lack of rigorous models for the quantitative prediction of the sintering behaviour of multicomponent and multiphase complex systems. The research in this area will be focussed on the development of new models so that sintering processes can be described in relation to the evolution of the microstructure as well as the chemical and phase composition of ceramic materials. These models (based e.g. on an atom’s diff usivities and the surface energy of grains) will facilitate the description of the microstructure of microstructured as well as nanostructured ceramic materials and thus tailor the properties of the fi nal products.

Physico-chemical properties of ceramic materials

The research in this area will be focussed on the study and testing of the surface properties and catalytic, photocatalytic and electrochemical properties of ceramic powdered materials, ceramic coatings, thick layers and membranes. The properties of nanostructured ceramic materials used as catalysts for chemical transformation of hydrocarbones, photocatalysts for water splitting, electroceramics for membrane reactors and solid oxide fuel cells will be studied and appropriately adjusted according to the selected application.

Electroanalytical diagnostic of materials

This research will be focussed on the study of (ceramic) materials in a low intensity AC and DC electric field using an integrated system of measuring instruments with a wide frequency range and sensitive electrometer, picoampermeter and sub-femtoampermeter. The materials (namely ceramics, polymers, and composites) will be tested by electrical and electrochemical methods (EIS, CV, LSV, DPV). The workplace for ultra-low current measurement (fA) will be used to study the kinetic properties and diff usion transport eff ects in advanced materials. Material properties will be evaluated during the course of aging by the impedance spectroscopy method in the frequency, time and temperature domain.

list / cards

Name and position



Prof. Martin Trunec
Research Group Leader
+420 54114 9728, +420 54114 3339
Prof. Karel Maca
Senior Researcher
+420 54114 9721, +420 54114 3344
Vítězslav Novák, Ph.D.
Senior Researcher
+420 54114 9722, +420 54114 6121
Václav Pouchlý, Ph.D.
Junior Researcher
+420 54114 9720, +420 54114 3368, +420 726 813 368
David Salamon, Ph.D.
Senior researcher
+420 54114 9717, +420 54114 3101
Zdenka Skálová
Support Staff
+420 54114 9714, +420 54114 2198
Lenka Novotná, Ph.D.
Junior researcher
+420 54114 9713, +420 54114 3340
Tomáš Spusta
Ph.D. student
+420 54114 9740, +420 54114 3368, +420 54114 3368
Pavel Tofel, Ph.D.
Junior researcher
+420 54114 3224, +420 54114 3224, +420 726 813 224
Prof. Jaroslav Cihlář
Senior Researcher
+420 54114 9724, +420 54114 3383, +420 606 728 645
Klára Částková, Ph.D.
Senior Researcher
+420 54114 9729, +420 54114 3343
Dina Kičmerová, Ph.D.
Junior researcher
Daniel Drdlík, Ph.D.
Junior Reseaarcher
+420 54114 9715, +420 54114 3340
Martin Frk, Ph.D.
Junior Researcher
+420 54114 9726, +420 54114 6127
Jakub Roleček
Ph.D. student
+420 54114 9739
Mária Veselá, Ph.D.
Junior researcher
Stanislava Jilčíková
Support Staff
+420 54114 9709, +420 54114 9709
Martin Kachlík, Ph.D.
junior researcher
+420 54114 9719, +420 54114 3368
Ondřej Čech, Ph.D.
Junior researcher
+420 54114 6110, +420 54114 6110, +420 726 816 110
Ladislav Chladil, Ph.D.
Ph.D. student
+420 54114 9727
Veronika Chlupová
Administration worker
+420 54114 9718
Jaroslav Kaštyl, Ph.D.
Junior researcher
+420 54114 9710, +420 54114 3340
Michal Veselý
Junior Researcher
+420 54114 9730, +420 54114 9305
Prof. Petr Vanýsek
Senior researcher
+420 54114 9723, +420 732 584 310
Lucie Dyčková
Ph.D. student
Hua Tan
Ph.D. student
+420 54114 9743
Petr Dzik, Ph.D.
Junior Researcher
+420 54114 9404, +420 54114 9441
Jana Sekaninová
Ph.D. student
Jan Hrubý
Ph.D. student
+420 541 14 3368
Vijay Bijalwan
Ph.D. student
Eva Jindrová
Ph.D. student
+420 54114 9716
Bo Nan
Ph.D. student
Přemysl Šťastný
Ph.D. student
+420 54114 9711
Vít Kašpárek
Ph.D. student
+420 54114 3420, +420 54114 2740, +420 776 369 585
Katarina Drdlíková
Hosting researcher
+420 54114 9712



  • DRDLIKOVA, K; KLEMENT, R; DRDLIK, D; SPUSTA, T; GALUSEK, D; MACA, K, 2017:Luminescent Er3+ doped transparent alumina ceramics. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 37 (7), p. 2695 - 2703.
  • CHAMRADOVA, I; VOJTOVA, L; CASTKOVA, K; DIVIS, P; PETEREK, M; JANCAR, J, 2017:The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer. COLLOID POLYM SCI 295 (1), p. 107 - 115.
  • KALOUSEK, R; SPOUSTA, J; ZLAMAL, J; DUB, P; SIKOLA, T; SHEN, ZJ; SALAMON, D; MACA, K, 2017:Rapid heating of zirconia nanoparticle-powder compacts by infrared radiation heat transfer. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 37 (3), p. 1067 - 1072.
  • KASTYL, J; CHLUP, Z; CLEMEN, F; TRUNEC, M, 2017:Mechanical properties of zirconia core-shell rods with porous core and dense shell prepared by thermoplastic co-extrusion. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 37 (6), p. 2439 - 2447.
  • LACINA, K; KUBESA, O; VANYSEK, P; HORACKOVA, V; MORAVEC, Z; SKLADAL, P, 2017:Selective electrocatalysis of reduced graphene oxide towards hydrogen peroxide aiming oxidases-based biosensing: Caution while interpreting. ELECTROCHIMICA ACTA 223 , p. 1 - 7.
  • TRUNEC, M; CHLUP, Z, 2017:Subtractive manufacturing of customized hydroxyapatite scaffolds for bone regeneration. CERAMICS INTERNATIONAL 43 (14), p. 11265 - 11273.


  • BODISOVA, K; KLEMENT, R; GALUSEK, D; POUCHLY, V; DRDLIK, D; MACA, K, 2016:Luminescent rare-earth-doped transparent alumina ceramics. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 36 (12), p. 2975 - 2980.
  • CASTKOVA, K; HADRABA, H; MATOUSEK, A; ROUPCOVA, P; CHLUP, Z; NOVOTNA, L; CIHLAR, J, 2016:Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 36 (12), p. 2903 - 2912.
  • CASTKOVA, K; MATOUSEK, A; BARTONICKOVA, E; CIHLAR, J; VANYSEK, P; CIHLAR, J, 2016:Sintering of Ce, Sm, and Pr Oxide Nanorods. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 99 (4), p. 1155 - 1163.
  • DRDLIK, D; SLAMA, M; HADRABA, H; DRDLIKOVA, K; CIHLAR, J, 2016:On the role of the indifferent electrolyte LiCl in electrophoretic deposition of hydroxyapatite from 2-propanol dispersions. CERAMICS INTERNATIONAL 42 (15), p. 16529 - 16534.
  • FILIPOVIC, S; OBRADOVIC, N; PAVLOVIC, VB; MITRIC, M; DORDEVIC, A; KACHLIK, M; MACA, K, 2016:Effect of consolidation parameters on structural, microstructural and electrical properties of magnesium titanate ceramics. CERAMICS INTERNATIONAL 42 (8), p. 9887 - 9898.
  • OBRADOVIC, N; FILIPOVIC, S; DORDEVIC, N; KOSANOVIC, D; MARKOVIC, S; PAVOVIC, V; OLCAN, D; DJORDJEVIC, A; KACHLIK, M; MACA, K, 2016:Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics. CERAMICS INTERNATIONAL 42 (12), p. 13909 - 13918.
  • POUCHLY, V; MACA, K, 2016:Sintering kinetic window for yttria-stabilized cubic zirconia. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 36 (12), p. 2931 - 2936.
  • SALAMON, D; KALOUSEK, R; ZLAMAL, J; MACA, K, 2016:Role of conduction and convection heat transfer during rapid crack-free sintering of bulk ceramic with low thermal conductivity. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 36 (12), p. 2955 - 2959.
  • SPUSTA, T; SVOBODA, J; MACA, K, 2016:Study of pore closure during pressure-less sintering of advanced oxide ceramics. ACTA MATERIALIA 115 , p. 347 - 353.
  • TRUNEC, M; KLIMKE, J; SHEN, ZJ, 2016:Transparent alumina ceramics densified by a combinational approach of spark plasma sintering and hot isostatic pressing. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 36 (16), p. 4333 - 4337.
  • TRUNEC, M; POUCHLY, V, 2016:Colloidal processing of low-concentrated zirconia nanosuspension using osmotic consolidation. CERAMICS INTERNATIONAL 42 (10), p. 11838 - 11843.


  • BAI, Y; MATOUSEK, A; TOFEL, P; BIJALWAN, V; NAN, B; HUGHES, H; BUTTON, TW, 2015:(Ba,Ca)(Zr,Ti)O-3 lead-free piezoelectric ceramics-The critical role of processing on properties. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 35 (13), p. 3445 - 3456.
  • CASTKOVA, K; MACA, K; CIHLAR, J; HUGHES, H; MATOUSEK, A; TOFEL, P; BAI, Y; BUTTON, TW, 2015:Chemical Synthesis, Sintering and Piezoelectric Properties of Ba0.85Ca0.15 Zr0.1Ti0.9O3 Lead-Free Ceramics. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 98 (8), p. 2373 - 2380.
  • DZIK, P; VESELY, M; BLASKOVA, M; KRALOVA, M; NEUMANN-SPALLART, M, 2015:Inkjet-printed interdigitated cells for photoelectrochemical oxidation of diluted aqueous pollutants. JOURNAL OF APPLIED ELECTROCHEMISTRY 45 (12), p. 1265 - 1276.
  • DZIK, P; VESELY, M; KRALOVA, M; NEUMANN-SPALLART, M, 2015:Ink-jet printed planar electrochemical cells. APPLIED CATALYSIS B-ENVIRONMENTAL 178 , p. 186 - 191.
  • HADRABA, H; CHLUP, Z; DRDLIK, D; CIHLAR, J, 2015:Micro-fibres containing composites prepared by EPD. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 36 (2), p. 365 - 371.
  • KASTYL, J; CHLUP, Z; CLEMENS, F; TRUNEC, M, 2015:Ceramic core-shell composites with modified mechanical properties prepared by thermoplastic co-extrusion. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 35 (10), p. 2873 - 2881.
  • KOCJAN, A; POUCHLY, V; SHEN, ZJ, 2015:Processing of zirconia nanoceramics from a coarse powder. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 35 (4), p. 1285 - 1295.
  • KRALOVA, M; DZIK, P; KASPAREK, V; VESELY, M; CIHLAR, J, 2015:Cold-Setting Inkjet Printed Titania Patterns Reinforced by Organosilicate Binder. MOLECULES 20 (9), p. 16582 - 16603.
  • SALAMON, D; KALOUSEK, R; MACA, K; SHEN, ZJ, 2015:Rapid Grain Growth in 3Y-TZP Nanoceramics by Pressure-Assisted and Pressure-Less SPS. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 98 (12), p. 3706 - 3712.
  • TRUNEC, M; MACA, K; CHMELIK, R, 2015:Polycrystalline alumina ceramics doped with nanoparticles for increased transparency. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 35 (3), p. 1001 - 1009.


  • DRDLIK, D; BARTONICKOVA, E; HADRABA, H; CIHLAR, J, 2014:Influence of anionic stabilization of alumina particles in 2-propanol medium on the electrophoretic deposition and mechanical properties of deposits. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 34 (14), p. 3365 - 3371.
  • KRALOVA, M; DZIK, P; VESELY, M; CIHLAR, J, 2014:Preparation and characterization of doped titanium dioxide printed layers. CATALYSIS TODAY 230 , p. 188 - 196.
  • MACA, K; POUCHLY, V; BODISOVA, K; SVANCAREK, P; GALUSEK, D, 2014:Densification of fine-grained alumina ceramics doped by magnesia, yttria and zirconia evaluated by two different sintering models. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 34 (16), p. 4363 - 4372.
  • SALAMON, D; TEIXEIRA, S; DUTCZAK, SM; STAMATIALIS, DF, 2014:Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery. CERAMICS INTERNATIONAL 40 (9), p. 14793 - 14799.
  • TRUNEC, M; MISAK, J, 2014:Consolidation of nanoparticle suspensions by centrifugation in non-porous moulds. CERAMICS INTERNATIONAL 40 (6), p. 7775 - 7782.
  • XIONG, Y; FU, ZY; POUCHLY, V; MACA, K; SHEN, ZJ, 2014:Preparation of Transparent 3Y-TZP Nanoceramics with No Low-Temperature Degradation. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 97 (5), p. 1402 - 1406.


  • CIHLAR, J; BARTONICKOVA, E; CIHLAR, J, 2013:Low-temperature sol-gel synthesis of anatase nanoparticles modified by Au, Pd and Pt and activity of TiO2/Au, Pd, Pt photocatalysts in water splitting. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 65 (3), p. 430 - 442.
  • HADRABA, H; DRDLIK, D; CHLUP, Z; MACA, K; DLOUHY, I; CIHLAR, J, 2013:Layered ceramic composites via control of electrophoretic deposition kinetics. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 33 (12), p. 2305 - 2312.
  • TRUNEC, M; CASTKOVA, K; ROUPCOVA, P, 2013:Effect of Phase Structure on Sintering Behavior of Zirconia Nanopowders. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 96 (12), p. 3720 - 3727.


  • BERA, O; TRUNEC, M, 2012:Optimization of Fine Alumina Gelcasting Using In Situ Dynamic Rheology. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 95 (9), p. 2849 - 2856.
  • BERA, O; TRUNEC, M, 2012:Oscillatory shear rheology of polystyrene melts filled with carbon black and fullerene. PLASTICS RUBBER AND COMPOSITES 41 (9), p. 384 - 389.
  • HADRABA, H; DRDLIK, D; CHLUP, Z; MACA, K; DLOUHY, I; CIHLAR, J, 2012:Laminated alumina/zirconia ceramic composites prepared by electrophoretic deposition. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 32 (9), p. 2053 - 2056.
  • KACHLIK, M; MACA, K; GOIAN, V; KAMBA, S, 2012:Processing of phase pure and dense bulk EuTiO3 ceramics and their infrared reflectivity spectra. MATERIALS LETTERS 74 (1), p. 16 - 18.
  • POUCHLY, V; MACA, K; XIONG, Y; SHEN, JZ, 2012:Master Sintering Surface - A Practical Approach to Its Construction and Utilization for Spark Plasma Sintering Prediction. SCIENCE OF SINTERING 44 (2), p. 169 - 175.
  • SALAMON, D; MACA, K; SHEN, ZJ, 2012:Rapid sintering of crack-free zirconia ceramics by pressure-less spark plasma sintering. SCRIPTA MATERIALIA 66 (11), p. 899 - 902.


  • Using theoretical and experimental approaches to sintering to obtain optimal microstructure and properties of advanced ceramic materials (GA15-06390S), Czech Science Foundation - Standard Grants, 2015 - 2017
  • Rheological behaviour of polymer melts and solutions loaded with nanoparticle fillers (OC09040), MEYS - COST CZ, 2009 - 2011
  • Processing and properties of ferroics and multiferroics (LD11035), MEYS - COST CZ, 2011 - 2013
  • Support of the development of high-quality teams in R&D in the field of material science (CZ.1.07/2.3.00/20.0029), MEYS - OP Education for Competiteveness, 2011 - 2014
  • Building up cooperation in R&D with the Research and Industrial Partners (Research4Industry) (CZ.1.07/2.4.00/17.0006), MEYS - OP Education for Competiteveness, 2011 - 2014
  • Study of catalytically active nanoparticles and nanostructures for the synthesis of hydrogen (LD12004), MEYS - COST CZ, 2012 - 2015


Ceramic laboratories are equipped with devices for synthesis, shaping and sintering of advanced ceramic materials: equipment for ceramic particle synthesis (hydrothermal reactors, ultrasonic reactors, ultrasonic spray pyrolysis reactor, microwave solvothermal reactors), a ceramic injection moulding machine, a double-screw ceramic extrusion machine with a granulator, a biaxial ceramic press, a cold isostatic press, a CVD system, a 3D printing machine, a drying climatic chamber, a hot isostatic press (1500°C, 2000 bar), a set of high-temperature furnaces for sintering ceramics in air and hydrogen atmospheres, a high-temperature furnace with a rapid heating rate, a high-temperature dilatometer; equipment for particle and ceramic body characterization: particle size, specific surface-area and pore-size analyses; equipment for rheological and electrokinetic measurements; systems for testing thermal and (photo)catalytic properties of ceramics; a complete ceramographic laboratory; and a 5D-milling machine.

More CEITEC News ...
Advanced Materials and Nanotechnology Seminar Series: Dr. Zoltan RACZ

22. září 2017 12:44

Advanced Materials and Nanotechnology Seminar Series: Dr. Zoltan RACZ

WHO? Dr. Zoltan Racz WHAT ABOUT? Paper-based Electronics – Materials, Fabrication and Applications WHEN? Tuesday: September, 26 starts 13:…

Lecture: Regulation of transcription elongation in E. coli by the RNA polymerase – RNA interactome

22. září 2017 10:34

Lecture: Regulation of transcription elongation in E. coli by the RNA…

WHEN: September 29, 2017 from 14:00 WHERE: Room 145, building A35, University Campus Bohunice SPEAKER: Prof. Renée Schroeder, …