Change institution
Advanced Nano and Microtechnologies Advanced Materials Structural Biology Gen. and Prot. of Plant Systems Molecular Medicine Brain and Mind Research Molecular Vet. Medicine

Konstantinos Tripsianes Research Group

Research Group Leader
Researcher ID
Phone: +420 54949 6607

Research areas

  • Structural biology of protein-DNA complexes
  • Small molecule inhibitors
  • NMR structure determination of large proteins

Main objectives

  • Biochemical and structural characterization of protein-DNA interactions involved in DNA repair and transcription
  • Design and pre-clinical evaluation of compounds for lead optimization
  • Development of integrated structural approaches for studying large biomolecules in solution

Content of research

We use NMR and hybrid structural methods, as well as biophysical techniques, to study protein-DNA complexes involved in DNA repair and transcription. Both topics involve proteins that are promising targets for anti-cancer drugs. Therefore the group has a strong interest in structure-based drug design.

Protein-DNA transactions are essential for genome maintenance. We use structural, biochemical, and computational tools to study the function of DNA-repair factors. We employ a combination of solution techniques (NMR, SAXS-SANS, FRET) to structurally characterize protein-DNA complexes and understand dynamic rearrangements induced upon DNA binding. Structural findings are complemented in a broader functional context by genetic, molecular or cell biology, and single-molecule assays (L. Krejci, Masaryk University).

DNA repair as a therapeutic target has received considerable attention owing to the promise of drugs that target DNA-repair enzymes and potentiate conventional cytotoxic therapy through mechanism-based approaches. In this direction, we study the binding of small molecules to protein targets of interest, in order to modulate their function for potential therapeutic benefit. Promising inhibitors are identified based on in silico design (Prof. E. Mikros, University of Athens; Prof. J. Tuszynski, University of Alberta) or high-throughput screening (P. Bartunek, IMG Prague).


list / cards

Name and position



Konstantinos Tripsianes, Ph.D.
Research Group Leader
+420 54949 6607
Thomas Evangelidis
Postdoctoral Fellow
+420 54949 7834
Anna Papageorgiou
PhD Student
+420 54949 7834
Vlastimil Tichý
Jitender Kumar
Monika Kubíčková



  • DAWIDOWSKI, M; EMMANOUILIDIS, L; KALEL, V C; TRIPSIANES, K; SCHORPP, K; HADIAN, K; KAISER, M; MÄSER, P; KOLONKO, M; TANGHE, S; RODRIGUEZ, A; SCHLIEBS, W;. ERDMANN, R; SATTLER, M; POPOWICZ, G M, 2017:Inhibitors of PEX14 disrupt protein import into glycosomes and kill Trypanosoma parasites. SCIENCE 355 (6332), p. 1416 - 1420.
  • EMMANOUILIDIS, L; SCHUTZ, U; TRIPSIANES, K; MADL, T; RADKE, J; RUCKTASCHEL, R; WILMANNS, M; SCHLIEBS, W; ERDMANN, R; SATTLER, M, 2017:Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19. Nature communications 8 (13)


  • VALUCHOVA, S; FULNECEK, J; PETROV, AP; TRIPSIANES, K; RIHA, K, 2016:A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement. SCIENTIFIC REPORTS 6


  • CAMARGO, DCR; TRIPSIANES, K; KAPP, TG; MENDES, J; SCHUBERT, J; CORDES, B; REIF, B, 2015:Cloning, expression and purification of the human Islet Amyloid Polypeptide (hIAPP) from Escherichia coli. PROTEIN EXPRESSION AND PURIFICATION 106 , p. 49 - 56.


  • TRIPSIANES, K; FRIBERG, A; BARRANDON, C; BROOKS, M; VAN TILBEURGH, H; SERAPHIN, B; SATTLER, M, 2014:A Novel Protein-Protein Interaction in the RES (REtention and Splicing) Complex. JOURNAL OF BIOLOGICAL CHEMISTRY 289 (41), p. 28640 - 28650.
  • TRIPSIANES, K; CHU, NK; FRIBERG, A; SATTLER, M; BECKER, CFW, 2014:Studying Weak and Dynamic Interactions of Posttranslationally Modified Proteins using Expressed Protein Ligation. ACS CHEMICAL BIOLOGY 9 (2), p. 347 - 352.
  • ZHANG, ZY; PORTER, J; TRIPSIANES, K; LANGE, OF, 2014:Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta. JOURNAL OF BIOMOLECULAR NMR 59 (3), p. 135 - 145.


  • TRIPSIANES, K; MADL, T; MACHYNA, M; FESSAS, D; ENGLBRECHT, C; FISCHER, U; NEUGEBAUER, KM; SATTLER, M, 2011:Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. NATURE STRUCTURAL & MOLECULAR BIOLOGY 18 (12), p. 1414 - U136.

1.    Structural basis for DNA recognition by human DNA helicases

Supervisor: Konstantinos Tripsianes, Ph.D.
Consultants: doc. Mgr. Lumír Krejčí, Ph.D.


RecQ helicases are ubiquitous enzymes involved in the maintenance of genome stability, acting in DNA repair, replication, and recombination. Germ line mutations in genes coding for three of five human RecQ enzymes are associated with autosomal recessive disorders, characterized by increased genome instability, premature aging, and cancer predisposition. In this project, we aim to characterize regulatory domains of human RecQ helicases to understand the specific role of RecQ enzymes within the cell. We will undertake structural methods, such as NMR Spectroscopy, SAXS, and X-ray Crystallography, in combination with a wide range of biophysical and biochemical techniques to clarify the structural determinants for DNA binding and protein-protein interactions. The structural findings will be evaluated in a cell biology setting to decipher the molecular mechanism of action for this class of enzymes.

More CEITEC News ...
Advanced Materials and Nanotechnology Seminar Series: Dr. Zoltan RACZ

22. září 2017 12:44

Advanced Materials and Nanotechnology Seminar Series: Dr. Zoltan RACZ

WHO? Dr. Zoltan Racz WHAT ABOUT? Paper-based Electronics – Materials, Fabrication and Applications WHEN? Tuesday: September, 26 starts 13:…

Lecture: Regulation of transcription elongation in E. coli by the RNA polymerase – RNA interactome

22. září 2017 10:34

Lecture: Regulation of transcription elongation in E. coli by the RNA…

WHEN: September 29, 2017 from 14:00 WHERE: Room 145, building A35, University Campus Bohunice SPEAKER: Prof. Renée Schroeder, …