

# X-ray Powder Diffractometer

Rigaku Šmartlab 3kW

#### DESCRIPTION

Rigaku SmartLab 3 kW is an automatic X-Ray powder diffractometer with  $\theta/\theta$  goniometer. The Bragg-Brentano and Parallel Beam modes are complemented by use of additional accesories (Eulerian craddle, sample holders, etc.) to extend the range of measurement techniques.

## $\bigcirc$ APPLICATION EXAMPLES



The pole figures represented texture/preferred orientation in the sample.

The Al rolled sheet is highly oriented along the planes a) (1 1 1) and c) (0 2 2).

The figures b) and d) belongs to (0 0 2) and (1 1 3) planes and shows the existence of big oriented crystallites.



Phase transformation of Perovskite powder during heating up to 350 °C in air, use of High Temperature Chamber HTK1600



Lattice parameter temperature dependence of the SnGeTe ternary alloy showing ferroelectric phase transition (denoted by black arrows). The experiment were performed using TTK450 chamber cooled with liquid nitrogen

#### 🔿 MORE INFO

Guarantor: Pavla Roupcová (pavla.roupcova@ceitec.vutbr.cz) Web: http://nano.ceitec.cz/x-ray-powder-diffractometer-rigaku-smartlab-3kw-rigaku3/



#### ♦ SPECIFICATION

| Phase analysis           | determination of presence and amount of curent phases in material                             |
|--------------------------|-----------------------------------------------------------------------------------------------|
| Texture                  | distribution of prefferential crystallographic orientation (texture)                          |
| Residual stress          | non-destructive measurement of residual stress                                                |
| Reflectivity             | thickness of thin layers, its density, roughness of surface and interfaces                    |
| In-situ High temperature | In-situ observation of material up to 1600 °C in vacuum and air                               |
| In-situ Low temperature  | In-situ observation of material at temperatures from -193 $^\circ \! C$ to +450 $^\circ \! C$ |
| In-situ Environmental    | In-situ observation of material up to 900 °C<br>in reactive gasses or low vacuum              |

### PUBLICATIONS

Železný, V. et al. Temperature-dependent far-infrared reflectance of an epitaxial (BaTiO3)8/(SrTiO3)4 superlattice. Phys. Rev. B 95, 214110 (2017)
(2) Castkova, K. et al. Electrospinning and thermal treatment of yttria doped zirconia fibres. Ceram. Int. 43, 7581-7587 (2017)

(3) Tkachenko, S. et al. Isothermal oxidation behavior of experimental Ti–Al–Si alloys at 700 °C in air. J. Alloy. Comp., 694, 1098-1108 (2017)

(4) Abdel-Mohsen, A. M. et al. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing

properties. Int. J. Pharm. 510, 86-99 (2016) (5) Novak, M. et al. Two paramagnetic types of cookeite from the Dolni Bory-Hate pegmatites, Moldanubian zone, Czech Republic: Proximal and distal

alteration producsts of Li-bearing sekaninaite. Can. Mineral. 53, 1035-1048 (2015)

(6) Castkova, K. et al. Chemical Synthesis, Sintering and Piezoelectric Properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 Lead-Free Ceramics. J. Am. Ceram.

Soc. 98, 2373-2380 (2015)

(7) Trunec, M et al. Effect of Phase Structure on Sintering Behavior of Zirconia Nanopowders. J. Am. Ceram. Soc. 96, 3720-3727 (2013)







