Lecture: From Single Molecules to Single Cells: Imaging Protein-Nucleic Acid Interactions

1. 3. 16:00, 2018
room 132, building A11, University Campus Bohunice
David Rueda, Imperial College, London, UK

Life Sciences Seminar Series


Understanding how nucleic acids and proteins interact to regulate key cellular processes requires the ability to observe these interactions directly. The dynamic nature of many nucleic acid-protein interactions makes it challenging to study them with traditional bulk methods. Biochemical, molecular or cellular biology approaches yield ensembleor population-averaged results, which may conceal key short-lived or low populated intermediates on the reaction pathway. To overcome the averaging problem, our group develops and applies single molecule microscopy (SMM) approaches to monitor such interactions in real-time. SMM has become increasingly important in studies of nucleic acidprotein interactions because these techniques provide access to crucial information on how individual molecules or complexes behave in bulk solution and in live cells, revealing the underlying structural dynamics and heterogeneity in the system. We will present our data investigating some of these interactions on a specific model enzyme that plays key role in essential cellular processes and biotechnology: CRISPR-Cas9. We will also present our recent efforts to image RNA molecules in live and fixed with fluorgenic RNA aptamers (Mango).