Scanning electron microscope (SEM) MIRA3 XMU (MIRA-STAN)

Scanning electron microscope (SEM) MIRA3 XMU
CONTACT US

Guarantor: Petr Lepcio, Ph.D.
Instrument status: Operational Operational, 6.6.2025 18:19
Equipment placement: CEITEC Nano - A1.11
Research group: CF: CEITEC Nano
Upcoming trainings: 25.6. 09:00 - 12:00: MIRA-STAN 2/2 - Meeting point at the microscope. This is a two-step training, register for part 1 in our booking system. More information about the training is available on our <a href=”https://cfmoodle.ceitec.vutbr.cz/course/view.php?id=76”>Moodle</a>.


Description:

Scanning electron microscope (SEM) MIRA3 XMU

Description

• Scanning electron microscope (SEM) is used to study the morphology and topography of conductive and non-conductive materials in high resolution (micro to nano-scale).
• Observation of surface samples with high depth of focus using multiple detection system (SE, BSE, STEM) including elemental analysis using energy dispersive spectrometer (EDS).

Applications

• Observation of both the surface and internal structure of micro and nano-objects (phase interface such as matrix-filler/reinforcement, particle distribution, aggregates and defects, fracture surfaces, porous 3D materials, units of supramolecular structure, etc.)
• evaluation of the shape and dimensions (length, diameter, volume, roughness) of powders, tubes, short fibers
• fast and highly accurate chemical microanalysis and elemental mapping of a sample surface
• qualitative elemental analysis including determination of the distribution of each element
• quantitative analysis of the individual elements in a sample
• The structural analysis of polymeric materials, biopolymers and composites, biomaterials, ceramics, bones, teeth, substrates for tissue engineering, etc.

Specification

• High Brightness Schottky Emitter
• Detectors:
SE, BSE, In-beam SE, In-Beam BSE
LVSTD
STEM detector
EDX analysis
• High-vacuum (≤9x10-3Pa) or low-vacuum mode (7-500 Pa)
• Magnification 25 to 1 000 000x
• Acceleration voltage 200 V to 30 kV
• X-Y-Z 130×130×100mm
• Maximum specimen height: 106 mm


Publications:

  • Nittoor‐Veedu, R.; Ju, X.; Langer, M.; Gao, W.; Otyepka, M.; Pumera, M., 2025: Periodic Table Exploration of MXenes for Efficient Electrochemical Nitrate Reduction to Ammonia. SMALL 21(10), doi: 10.1002/smll.202410105; FULL TEXT
    (KRATOS-XPS, MIRA-STAN, RIGAKU3, FTIR-CHEMLAB)
  • KOMÁRKOVÁ, M.; BENEŠÍK, M.; ČERNÁ, E.; SEDLÁČKOVÁ, L.; MOŠA, M.; VOJTOVÁ, L.; FRANC, A.; PANTŮČEK, R., 2025: The pharmaceutical quality of freeze-dried tablets containing therapeutic bacteriophages against Pseudomonas aeruginosa and Staphylococcus aureus. INTERNATIONAL JOURNAL OF PHARMACEUTICS 671, p. 1 - 9, doi: 10.1016/j.ijpharm.2025.125199; FULL TEXT
    (MIRA-STAN, LEICACOAT-STAN)
  • Joda, N. N.; Edelmannová, M. F.; Pavliňák, D.; Santana, V. T.; Chennam, P. K.; Rihova, M.; Kočí, K.; Macak, J. M., 2025: Centrifugally spun hematite Fe2O3 hollow fibers: Efficient photocatalyst for H2 generation and CO2 reduction. APPLIED SURFACE SCIENCE 686, p. 1 - 12, doi: 10.1016/j.apsusc.2024.162132
    (MIRA-STAN, LEICACOAT-STAN, RIGAKU3, KRATOS-XPS, WITEC-RAMAN, BET-DEGASSER, BET-ANAMET, JASCO)
  • VELIKOV, D.; JANČÍK PROCHÁZKOVÁ, A.; PUMERA, M., 2024: On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots. ACS NANOSCIENCE AU 4(4), p. 243 - 7, doi: 10.1021/acsnanoscienceau.4c00002; FULL TEXT
    (MIRA-STAN)
  • RONOH, K.; NOVOTNÝ, J.; MRŇA, L.; KNÁPEK, A.; SOBOLA, D., 2024: Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablation. MATERIALS RESEARCH EXPRESS 11(1), doi: 10.1088/2053-1591/ad184b; FULL TEXT
    (DEKTAK, MIRA-STAN, KRATOS-XPS, NANOINDENTER)

Show more publications...