Next generation materials for flexible wearable sensors and energy storage

Supervisor Prof. Martin Pumera, Ph.D.
Research Group Future Energy and Innovation Lab

The transition to flexible and wearable electronics demands advanced energy storage and sensing materials. Our group pioneers the development of next-generation systems that integrate:

  • Flexible and stretchable batteries and supercapacitors with high energy density
  • Wearable sensors for real-time health and environmental monitoring
  • 2D and MXene-based nanomaterials, conductive polymers, and hybrid architectures
  • 3D printing for batteries and sensors

This research bridges materials science, nanotechnology, and device engineering, addressing key challenges in:

  • Mechanical flexibility and stability of energy storage devices
  • Biocompatibility and integration into wearable platforms
  • High sensitivity, selectivity, and durability of flexible sensors

We seek motivated postdoctoral researchers eager to shape the future of smart energy and sensing technologies through materials innovation and device engineering.

See list of topics
  1. Advanced software for batch processing of correlative imaging with quantitative phase and fluorescence
  2. Advancing coral biomineralization studies: Real-time imaging of coral skeletogenesis using 4D X-ray microcomputed tomography
  3. Advancing time-resolved cryo-EM to elucidate insulin receptor inhibition mechanisms
  4. Atomically engineered materials for sustainable carbon-free fuels
  5. Development and application of novel technology and/or characterization methods
  6. Development of multimaterial 3D printing using the digital light processing method
  7. Environmental “double trouble”: Elucidating plant molecular responses to heavy metal and PFAS co-contamination
  8. Exploring high-frequency electrical neurostimulation beyond classical mechanisms
  9. Exploitation of novel functional properties of surfaces/nanostructures in nanophotonics, nanoelectronics and/or quantum technologies
  10. FAST-4D hiQPI: Fast, accurate, scalable time-lapse 4D holographic incoherent-light-source quantitative phase imaging
  11. Genetic predispositions to development of hematological malignancies
  12. Characterization of electrochemical double layers...
  13. In situ magneto-ionic control of antiferromagnetic/ferromagnetic interfaces
  14. Investigation of novel possibilities for targeted therapy in acute myeloid leukemia
  15. Long non-coding RNAs in microenvironmental interactions of B cell chronic lymphocytic leukemia
  16. Magnetic actuation platforms for biological environments
  17. Magneto-structural properties and quantum phenomena in molecular materials
  18. Manipulation and detection of molecular magnets at 2D van der Waals interface
  19. Molecular mechanisms of heat stress adaptation...
  20. Nanorobots for biomedical and environmental applications
  21. Next generation materials for flexible wearable sensors and energy storage
  22. Next-generation noninvasive neurostimulation technologies
  23. Postdoctoral researcher in structural virology
  24. Processing of carbide-based ceramics by upcycling ceramic waste
  25. Pushing thin-film deposition techniques beyond their conformality limits
  26. Radical-free photocrosslinkable hydrogels for 3D bioprinting
  27. Role of transcription factors in B-cell malignancies
  28. Structural changes in intrinsically disordered proteins
  29. The future of deep brain stimulation in Parkinson’s disease
  30. Transformers applications for industrial systems faults detection
  31. Translation control
  32. Tuning the bioactivity of carbon-based coatings and nanoparticles
  33. Unravelling microplastic fate and transport
  34. Upcycling of ceramic waste to produce carbide-based ceramics