Role of transcription factors in onset and progression of B-cell malignancies

Supervisor Prof. Marek Mráz, MD, Ph.D.
Research Group Microenvironment of Immune Cells

Transcription factors (TFs) are important regulators of cell growth, development, and hematopoietic cell differentiation. Disrupting the mechanisms that are responsible for the proper function of the transcription apparatus can lead to the onset of blood cell malignancies. The abnormal function of TFs due to dysregulation or genomic aberrations are often associated with the development of leukemias, including chronic lymphocytic leukemia (CLL) and other B-cell malignancies. Much evidence from the latest research shows that CLL cells have an extra deregulated chromatin structure and show an increased incidence of activated enhancer and promoter areas, allowing TFs to bind and subsequently aberrantly activate potential oncogenes. Moreover, specific post-translational modification of some TFs have been noted as a result of dysregulated signaling in the leukemia microenvironment and this also contributes to disease progression. However, it remains largely unknown which TFs and how they contribute to the development and aggressiveness of CLL and other B malignancies. This project aims to describe the role of candidate TFs in the development and progression of B-cell malignancies with emphasis on CLL while also testing targeted therapy options, e.g. using specific inhibitors of TFs or chromatin modification regulators that are currently available or in development.We have identified several TFs that might act as novel regulators of the B cell survival, proliferation and crosstalk with other immune cells. The PhD student will further investigate this using techniques such as genome editing (CRISPR), RNA sequencing, use of primary samples, and functional studies with various in vitro and in vivo mouse models. The research is also relevant for understanding resistance mechanisms to targeted therapy.

See list of topics
  1. Advanced software for batch processing of correlative imaging with quantitative phase and fluorescence
  2. Advancing coral biomineralization studies: Real-time imaging of coral skeletogenesis using 4D X-ray microcomputed tomography
  3. Advancing time-resolved cryo-EM to elucidate insulin receptor inhibition mechanisms
  4. Atomically engineered materials for sustainable carbon-free fuels
  5. Development and application of novel technology and/or characterization methods
  6. Development of multimaterial 3D printing using the digital light processing method
  7. Environmental “double trouble”: Elucidating plant molecular responses to heavy metal and PFAS co-contamination
  8. Exploring high-frequency electrical neurostimulation beyond classical mechanisms
  9. Exploitation of novel functional properties of surfaces/nanostructures in nanophotonics, nanoelectronics and/or quantum technologies
  10. FAST-4D hiQPI: Fast, accurate, scalable time-lapse 4D holographic incoherent-light-source quantitative phase imaging
  11. Genetic predispositions to development of hematological malignancies
  12. Characterization of electrochemical double layers...
  13. In situ magneto-ionic control of antiferromagnetic/ferromagnetic interfaces
  14. Investigation of novel possibilities for targeted therapy in acute myeloid leukemia
  15. Long non-coding RNAs in microenvironmental interactions of B cell chronic lymphocytic leukemia
  16. Magnetic actuation platforms for biological environments
  17. Magneto-structural properties and quantum phenomena in molecular materials
  18. Manipulation and detection of molecular magnets at 2D van der Waals interface
  19. Molecular mechanisms of heat stress adaptation...
  20. Nanorobots for biomedical and environmental applications
  21. Next generation materials for flexible wearable sensors and energy storage
  22. Next-generation noninvasive neurostimulation technologies
  23. Postdoctoral researcher in structural virology
  24. Processing of carbide-based ceramics by upcycling ceramic waste
  25. Pushing thin-film deposition techniques beyond their conformality limits
  26. Radical-free photocrosslinkable hydrogels for 3D bioprinting
  27. Role of transcription factors in B-cell malignancies
  28. Structural changes in intrinsically disordered proteins
  29. The future of deep brain stimulation in Parkinson’s disease
  30. Transformers applications for industrial systems faults detection
  31. Translation control
  32. Tuning the bioactivity of carbon-based coatings and nanoparticles
  33. Unravelling microplastic fate and transport
  34. Upcycling of ceramic waste to produce carbide-based ceramics